Термоэлектрические термометры и термометры сопротивления

Термометр сопротивления с дисплеем Siemens SITRANS

На сегодняшний день редкая котельная или ЦТП обходятся без системы автоматики. С ее помощью можно настроить систему отопления так, чтобы все процессы в ней происходили без участия человека. Основным процессы регулирования в системе отопления проходят по температуре, либо по температуре наружного воздуха, либо по температуре теплоносителя. Ранее рассмотренные термометры расширения, а именно жидкостные, манометрические термометры, к использованию в системах автоматизации непригодны. Биметаллические термометры могут управлять контактами реле посредством изгибания пластины, но все же строить автоматику только на них достаточно проблематично. Поэтому стоит обратить внимание на основную группу приборов для измерения температуры, применяющихся в сфере отопления, — электрические термометры.

Они делятся на два вида:
термоэлектрические термометры (принцип их работы основан на возникновении термоэлектродвижущей силы);
термометры сопротивления (в основе принципа их работы лежит изменение электрического сопротивления проводников, изготовленных из металла, при изменении их температуры).

Термоэлектрические термометры имеют очень большой диапазон измерений от -50 до +1300°С. Причем верхняя планка измерения температуры может быть в некоторых случаях поднята еще выше (до +2500°С) . Именно данная характеристика и является главным достоинством термоэлектрических термометров.

Конструкция термоэлектрического термометра (термопары): 1 — изолятор; 2,3 — штуцер; 4 — головка; 5 — прокладка; 6 — крышка; 7 — контактная клемма; 8 — контакт для компенсационных проводов; 9 — компаунд; 10 — термоэлектрод; 11 — защитная гильза; 12 — горячий спай; 13 — керамический наконечник

Работа данного вида термометров основана на том факте, что в замкнутой цепи, состоящей из двух разнородных электродов (проводников), возникает термоЭДС, если их холодный и горячий спаи имеют различную температуру. Спаи имеют свои специальные названия – холодный спай носит название свободного, горячий спай – рабочего. Именно изменение температуры рабочего конца спая вызывает соответствующее изменение термоэлектродвижущей силы, которое воспринимается вторичным электроприбором – потенциометром либо пирометрическим милливольтметром. Значение термоЭДС зависит от материала электродов и от температуры холодного и горячего спаев.

Для изготовления стандартных термоэлектрических термометров (их еще называют термопары) применяют платины и такие сплавы, как хромель, алюмель, копель, платинородий. Обозначаются данные термометры по первым буквам электродов, например ТХК – Термометр Хромель-Копелевый.

Преимуществами термопар являются их простота, высокая точность и большой диапазон измерений, дешевизна и надежность. А главными недостатками является влияние температуры свободных концов термопары на ее показания, а также нелинейная характеристика зависимости термоЭДС от температуры.

Для минимизации влияния погрешностей в показаниях прибора к свободным концам присоединяют так называемые компенсационные провода, которые отводятся в зону с постоянной и известной температурой. Изготавливаются компенсационные провода обязательно из тех же материалов, что и термометры. При использовании компенсационных проводов обязательно нужно проверять правильность их присоединения, а также их соответствие термометру.

Термометры сопротивления имеют диапазоны измерений, зависящие от материала изготовления чувствительного элемента прибора. Если он изготовлен из платины, то с помощью данного термометра сопротивления (ТСП – Термометр Сопротивления Платиновый) можно измерять температуры от -200 до 1100°С. Если же чувствительный прибор изготовлен из меди (ТСМ – Термометр Сопротивления Медный), то диапазон его измерений составляет от -50 до 180°С.

Термометр сопротивления

Питание схемы постоянным током осуществляется двумя методами: либо от аккумулятора небольшой емкости, либо от электрической сети через выпрямитель. В качестве показывающих вторичных электрических приборов используются логометры или уравновешенные автоматические мосты (мост Уинстона). Причем немаловажно, что к одному вторичному прибору можно подключать сразу несколько термометров сопротивления. Достоинством термометров данного вида является отсутствие необходимости в поправке на температуры свободных концов. Благодаря этому обстоятельству температуру измеряемой среды можно отсчитывать сразу по вторичному прибору.

Защитные чехлы термометров сопротивления по своей конструкции очень похожи на чехлы термоэлектрических термометров. Соединительные медные провода должны иметь такое же сопротивление, как и сопротивление, указанное на шкале прибора. При несоответствии же сопротивления соединительных проводов возникает необходимость в подключении подгоночного сопротивления из манганиновой проволоки.

Преимуществами термометров сопротивления являются их высокая точность, стабильность и практически линейная характеристика зависимости сопротивления от температуры, что упрощает разработку вторичных преобразователей сигнала. Также при трех- и четырехпроводной схемах подключения исключается влияние сопротивления линий связи.

Недостатком является их относительно небольшой диапазон измерений в сравнении с термопарами, а также необходимость наличия источника питания для работы термометров сопротивления.

 

Написать ответ

Выш Mail не будет опубликован


*